IIR Adaptive Filters for Detection of Gravitational Waves from Coalescing Binaries
نویسنده
چکیده
In this paper we propose a new strategy for gravitational waves detection from coalescing binaries, using IIR Adaptive Line Enhancer (ALE) filters. This strategy is a classical hierarchical strategy in which the ALE filters have the role of triggers, used to select data chunks which may contain gravitational events, to be further analyzed with more refined optimal techniques, like the the classical Matched Filter Technique. After a direct comparison of the performances of ALE filters with the Wiener-Komolgoroff optimum filters (matched filters), necessary to discuss their performance and to evaluate the statistical limitation in their use as triggers, we performed a series of tests, demonstrating that these filters are quite promising both for the relatively small computational power needed and for the robustness of the algorithms used. The performed tests have shown a weak point of ALE filters, that we fixed by introducing a further strategy, based on a dynamic bank of ALE filters, running simultaneously, but started after fixed delay times. The results of this global trigger strategy seems to be very promising, and can be already used in the present interferometers, since it has the great advantage of requiring a quite small computational power and can easily run in real-time, in parallel with other data analysis algorithms.
منابع مشابه
Adaptive Line Enhancers filters for Gravitational Waves Detection from coalescing binaries
In this paper we propose a new strategy for gravitational waves detection from coalescing binaries, using IIR Adaptive Line Enhancer (ALE) filters. This strategy is a classical hierarchical strategy in which the ALE filters have the role of triggers, used to select data chunks which may contain gravitational events, to be further analyzed with more refined optimal techniques, like the the class...
متن کاملGravitational waves from coalescing compact binaries
This article is intended to provide a pedagogical account of issues related to, and recent work on, gravitational waves from coalescing compact binaries (composed of neutron stars and/or black holes). These waves are the most promising for kilometer-size interferometric detectors such as LIGO and VIRGO. Topics discussed include: interferometric detectors and their noise; coalescing compact bina...
متن کاملAdaptive Line Enhancement Using a Parallel IIR Filter with A Step-By-step Algorithm
A step-by-step algorithm for enhancement of periodic signals that are highly corrupted by additive uncorrelated white gausian noise is proposed. In each adaptation step a new parallel second-order section is added to the previous filters. Every section has only one adjustable parameter, i.e., the center frequency of the self-tuning filter. The bandwidth and the convergence factor of each secti...
متن کاملar X iv : g r - qc / 9 50 80 17 v 1 7 A ug 1 99 5 Gravitational waves from coalescing compact binaries ∗
This article is intended to provide a pedagogical account of issues related to, and recent work on, grav-itational waves from coalescing compact binaries (composed of neutron stars and/or black holes). These waves are the most promising for kilometer-size interferometric detectors such as LIGO and VIRGO. Topics discussed include: interferometric detectors and their noise; coalescing compact bin...
متن کاملDetection of Gravitational Waves from Eccentric Compact Binaries
Coalescing compact binaries have been pointed out as the most promising source of gravitational waves for kilometer-size interferometers such as LIGO. Gravitational wave signals are extracted from the noise in the detectors by matched filtering. This technique performs really well if an a priori theoretical knowledge of the signal is available. The information known about the possible sources i...
متن کامل